Production of 3-Oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic Acid in the Fungus Aspergillus oryzae: A Step Towards Heterologous Production of Pyrethrins in Fungi.
نویسندگان
چکیده
Pyrethrins are natural insecticides, which accumulate to high concentrations in pyrethrum (Chrysanthemum cinerariaefolium) flowers. Synthetic pyrethroids are more stable, more efficacious and cheaper, but contemporary requirements for safe and environmentally friendly pesticides encourage a return to the use of natural pyrethrins, and this would be favoured by development of an efficient route to their production by microbial fermentation. The biosynthesis of pyrethrins involves ester linkage between an acid moiety (chrysanthemoyl or pyrethroyl, synthesised via the mevalonic acid pathway from glucose), and an alcohol (pyrethrolone). Pyrethrolone is generated from 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid, which originates from α-linolenic acid via the jasmonic acid biosynthetic cascade. The first four genes in this cascade, encoding lipoxygenase 2, allene-oxide synthase, allene-oxide cyclase 2 and 12-oxophytodienoic acid reductase 3, were amplified from an Arabidopsis thaliana cDNA library, cloned in a purpose-built fungal multigene expression vector and expressed in Aspergillus oryzae. HPLC-MS analysis of the transgenic fungus homogenate gave good evidence for the presence of 3-oxo-2-(2'-pentenyl)-cyclopentane-1-octanoic acid.
منابع مشابه
New stereoisomeric derivatives of jasmonic acid generated by biotransformation with the fungus Gibberella fujikuroi affect the viability of human cancer cells
Background: Several studies have shown that (-)-Jasmonic acid, (+)-7-iso-Jasmonic acid and its methyl ester, methyl jasmonate, have anti-cancer activity in vitro and in vivo, exhibiting selective cytotoxicity towards cancer cells. The degree of activity of these molecules is strongly related to their stereochemistry. The biotransformation of known compounds, natural or synthesized, related to i...
متن کاملEnhanced production and secretion of heterologous proteins by the filamentous fungus Aspergillus oryzae via disruption of vacuolar protein sorting receptor gene Aovps10.
Filamentous fungi have received attention as hosts for heterologous protein production because of their high secretion capability and eukaryotic posttranslational modifications. However, despite these positive attributes, a bottleneck in posttranscriptional processing limits protein yields. The vacuolar protein sorting gene VPS10 encodes a sorting receptor for the recognition and delivery of se...
متن کاملModulating endoplasmic reticulum-Golgi cargo receptors for improving secretion of carrier-fused heterologous proteins in the filamentous fungus Aspergillus oryzae.
Filamentous fungi are excellent hosts for industrial protein production due to their superior secretory capacity; however, the yield of heterologous eukaryotic proteins is generally lower than that of fungal or endogenous proteins. Although activating protein folding machinery in the endoplasmic reticulum (ER) improves the yield, the importance of intracellular transport machinery for heterolog...
متن کاملDevelopment of a pyrG Mutant of Aspergillus oryzae Strain S1 as a Host for the Production of Heterologous Proteins
The ease with which auxotrophic strains and genes that complement them can be manipulated, as well as the stability of auxotrophic selection systems, are amongst the advantages of using auxotrophic markers to produce heterologous proteins. Most auxotrophic markers in Aspergillus oryzae originate from chemical or physical mutagenesis that may yield undesirable mutations along with the mutation o...
متن کاملEfficient Production of the Flavoring Agent Zingerone and of both (R)- and (S)-Zingerols via Green Fungal Biocatalysis. Comparative Antifungal Activities between Enantiomers
Zingerone (1) and both chiral forms of zingerol (2) were obtained from dehydrozingerone (3) by biotransformation with filamentous fungi. The bioconversion of 3 with A. fumigatus, G. candidum or R. oryzae allowed the production of 1 as the sole product at 8 h and in 81%-90% at 72 h. In turn, A. flavus, A. niger, C. echinulata, M. circinelloides and P. citrinum produced 1 at 8 h, but at 72 h alco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biotechnology
دوره 58 3 شماره
صفحات -
تاریخ انتشار 2016